
Package index
-
igraph_options()igraph_opt() - Parameters for the igraph package
-
with_igraph_opt() - Run code with a temporary igraph options setting
-
connect()ego_size()neighborhood_size()ego()neighborhood()make_ego_graph()make_neighborhood_graph() - Neighborhood of graph vertices
-
make_() - Make a new graph
-
make_bipartite_graph()bipartite_graph() - Create a bipartite graph
-
make_chordal_ring()chordal_ring() - Create an extended chordal ring graph
-
make_clusters() - Creates a communities object.
-
make_de_bruijn_graph()de_bruijn_graph() - De Bruijn graphs
-
make_empty_graph()empty_graph() - A graph with no edges
-
make_from_prufer()from_prufer() - Create an undirected tree graph from its Prüfer sequence
-
make_full_bipartite_graph()full_bipartite_graph() - Create a full bipartite graph
-
make_full_citation_graph()full_citation_graph() - Create a complete (full) citation graph
-
make_full_graph()full_graph() - Create a full graph
-
make_graph()make_directed_graph()make_undirected_graph()directed_graph()undirected_graph() - Create an igraph graph from a list of edges, or a notable graph
-
make_kautz_graph()kautz_graph() - Kautz graphs
-
make_lattice()lattice() - Create a lattice graph
-
make_line_graph()line_graph() - Line graph of a graph
-
make_ring()ring() - Create a ring graph
-
make_star()star() - Create a star graph, a tree with n vertices and n - 1 leaves
-
make_tree()tree() - Create tree graphs
-
realize_degseq() - Creating a graph from a given degree sequence, deterministically
-
realize_bipartite_degseq()experimental - Creating a bipartite graph from two degree sequences, deterministically
-
graph_from_atlas()atlas() - Create a graph from the Graph Atlas
-
graph_from_edgelist()from_edgelist() - Create a graph from an edge list matrix
-
graph_from_literal()from_literal() - Creating (small) graphs via a simple interface
-
graph_() - Convert object to a graph
-
graph_from_lcf() - Creating a graph from LCF notation
-
as_data_frame()graph_from_data_frame()from_data_frame() - Creating igraph graphs from data frames or vice-versa
-
sample_() - Sample from a random graph model
-
sample_bipartite()bipartite()deprecated - Bipartite random graphs
-
bipartite_gnm()bipartite_gnp()sample_bipartite_gnm()sample_bipartite_gnp() - Bipartite random graphs
-
sample_chung_lu()chung_lu()experimental - Random graph with given expected degrees
-
sample_correlated_gnp() - Generate a new random graph from a given graph by randomly adding/removing edges
-
sample_correlated_gnp_pair() - Sample a pair of correlated \(G(n,p)\) random graphs
-
sample_degseq()degseq() - Generate random graphs with a given degree sequence
-
sample_dot_product()dot_product() - Generate random graphs according to the random dot product graph model
-
sample_fitness() - Random graphs from vertex fitness scores
-
sample_fitness_pl() - Scale-free random graphs, from vertex fitness scores
-
sample_forestfire() - Forest Fire Network Model
-
sample_gnm()gnm() - Generate random graphs according to the \(G(n,m)\) Erdős-Rényi model
-
sample_gnp()gnp() - Generate random graphs according to the \(G(n,p)\) Erdős-Rényi model
-
sample_grg()grg() - Geometric random graphs
-
sample_growing()growing() - Growing random graph generation
-
sample_hierarchical_sbm()hierarchical_sbm() - Sample the hierarchical stochastic block model
-
sample_islands() - A graph with subgraphs that are each a random graph.
-
sample_k_regular() - Create a random regular graph
-
sample_last_cit()last_cit()sample_cit_types()cit_types()sample_cit_cit_types()cit_cit_types() - Random citation graphs
-
sample_pa()pa() - Generate random graphs using preferential attachment
-
sample_pa_age()pa_age() - Generate an evolving random graph with preferential attachment and aging
-
sample_pref()pref()sample_asym_pref()asym_pref() - Trait-based random generation
-
sample_sbm()sbm() - Sample stochastic block model
-
sample_smallworld()smallworld() - The Watts-Strogatz small-world model
-
sample_traits_callaway()traits_callaway()sample_traits()traits() - Graph generation based on different vertex types
-
sample_tree() - Sample trees randomly and uniformly
-
make_() - Make a new graph
-
sample_() - Sample from a random graph model
-
simplified() - Constructor modifier to drop multiple and loop edges
-
with_edge_() - Constructor modifier to add edge attributes
-
with_graph_() - Constructor modifier to add graph attributes
-
with_vertex_() - Constructor modifier to add vertex attributes
-
without_attr() - Construtor modifier to remove all attributes from a graph
-
without_loops() - Constructor modifier to drop loop edges
-
without_multiples() - Constructor modifier to drop multiple edges
-
as.igraph() - Conversion to igraph
-
graph_from_adjacency_matrix()from_adjacency() - Create graphs from adjacency matrices
-
add_layout_() - Add layout to graph
-
component_wise() - Component-wise layout
-
layout_()print(<igraph_layout_spec>)print(<igraph_layout_modifier>) - Graph layouts
-
layout_as_bipartite()as_bipartite() - Simple two-row layout for bipartite graphs
-
layout_as_star()as_star() - Generate coordinates to place the vertices of a graph in a star-shape
-
layout_as_tree()as_tree() - The Reingold-Tilford graph layout algorithm
-
layout_in_circle()in_circle() - Graph layout with vertices on a circle.
-
layout_nicely()nicely() - Choose an appropriate graph layout algorithm automatically
-
layout_on_grid()on_grid() - Simple grid layout
-
layout_on_sphere()on_sphere() - Graph layout with vertices on the surface of a sphere
-
layout_randomly()randomly() - Randomly place vertices on a plane or in 3d space
-
layout_with_dh()with_dh() - The Davidson-Harel layout algorithm
-
layout_with_fr()with_fr() - The Fruchterman-Reingold layout algorithm
-
layout_with_gem()with_gem() - The GEM layout algorithm
-
layout_with_graphopt()with_graphopt() - The graphopt layout algorithm
-
layout_with_kk()with_kk() - The Kamada-Kawai layout algorithm
-
layout_with_lgl()with_lgl() - Large Graph Layout
-
layout_with_mds()with_mds() - Graph layout by multidimensional scaling
-
layout_with_sugiyama()with_sugiyama() - The Sugiyama graph layout generator
-
merge_coords()layout_components() - Merging graph layouts
-
norm_coords() - Normalize coordinates for plotting graphs
-
normalize() - Normalize layout
-
layout_with_drl()with_drl() - The DrL graph layout generator
-
categorical_pal() - Palette for categories
-
diverging_pal() - Diverging palette
-
r_pal() - The default R palette
-
sequential_pal() - Sequential palette
-
plot(<igraph>) - Plotting of graphs
-
rglplot() - 3D plotting of graphs with OpenGL
-
plot.commonigraph.plotting - Drawing graphs
-
plot_dendrogram(<igraphHRG>) - HRG dendrogram plot
-
plot_dendrogram() - Community structure dendrogram plots
-
curve_multiple() - Optimal edge curvature when plotting graphs
-
shapes()shape_noclip()shape_noplot()add_shape() - Various vertex shapes when plotting igraph graphs
-
vertex.shape.pie - Using pie charts as vertices in graph plots
-
align_layout() - Align a vertex layout This function centers a vertex layout on the coordinate system origin and rotates the layout to achieve a visually pleasing alignment with the coordinate axes. Doing this is particularly useful with force-directed layouts such as
layout_with_fr().
-
greedy_vertex_coloring() - Greedy vertex coloring
-
add_edges() - Add edges to a graph
-
add_vertices() - Add vertices to a graph
-
complementer() - Complementer of a graph
-
compose() - Compose two graphs as binary relations
-
contract() - Contract several vertices into a single one
-
delete_edges() - Delete edges from a graph
-
delete_vertices() - Delete vertices from a graph
-
difference() - Difference of two sets
-
difference(<igraph>) - Difference of graphs
-
disjoint_union()`%du%` - Disjoint union of graphs
-
edge()edges() - Helper function for adding and deleting edges
-
connect()ego_size()neighborhood_size()ego()neighborhood()make_ego_graph()make_neighborhood_graph() - Neighborhood of graph vertices
-
`-`(<igraph>) - Delete vertices or edges from a graph
-
intersection() - Intersection of two or more sets
-
intersection(<igraph>) - Intersection of graphs
-
path() - Helper function to add or delete edges along a path
-
permute() - Permute the vertices of a graph
-
`+`(<igraph>) - Add vertices, edges or another graph to a graph
-
rep(<igraph>)`*`(<igraph>) - Replicate a graph multiple times
-
reverse_edges()t(<igraph>) - Reverse edges in a graph
-
simplify()is_simple()simplify_and_colorize() - Simple graphs
-
union() - Union of two or more sets
-
union(<igraph>) - Union of graphs
-
vertex()vertices() - Helper function for adding and deleting vertices
-
each_edge() - Rewires the endpoints of the edges of a graph to a random vertex
-
keeping_degseq() - Graph rewiring while preserving the degree distribution
-
rewire() - Rewiring edges of a graph
-
delete_edge_attr() - Delete an edge attribute
-
delete_graph_attr() - Delete a graph attribute
-
delete_vertex_attr() - Delete a vertex attribute
-
`edge_attr<-`() - Set one or more edge attributes
-
edge_attr() - Query edge attributes of a graph
-
edge_attr_names() - List names of edge attributes
-
`graph_attr<-`() - Set all or some graph attributes
-
graph_attr() - Graph attributes of a graph
-
graph_attr_names() - List names of graph attributes
-
igraph-attribute-combinationattribute.combination - How igraph functions handle attributes when the graph changes
-
`$`(<igraph>)`$<-`(<igraph>) - Getting and setting graph attributes, shortcut
-
`[[<-`(<igraph.vs>)`[<-`(<igraph.vs>)`$`(<igraph.vs>)`$<-`(<igraph.vs>)`V<-`() - Query or set attributes of the vertices in a vertex sequence
-
set_edge_attr() - Set edge attributes
-
set_graph_attr() - Set a graph attribute
-
set_vertex_attr() - Set vertex attributes
-
set_vertex_attrs() - Set multiple vertex attributes
-
`vertex_attr<-`() - Set one or more vertex attributes
-
vertex_attr() - Query vertex attributes of a graph
-
vertex_attr_names() - List names of vertex attributes
-
E() - Edges of a graph
-
V() - Vertices of a graph
-
as_ids() - Convert a vertex or edge sequence to an ordinary vector
-
`[[<-`(<igraph.es>)`[<-`(<igraph.es>)`$`(<igraph.es>)`$<-`(<igraph.es>)`E<-`() - Query or set attributes of the edges in an edge sequence
-
`[`(<igraph.es>) - Indexing edge sequences
-
`[[`(<igraph.es>) - Select edges and show their metadata
-
`[[<-`(<igraph.vs>)`[<-`(<igraph.vs>)`$`(<igraph.vs>)`$<-`(<igraph.vs>)`V<-`() - Query or set attributes of the vertices in a vertex sequence
-
`[`(<igraph.vs>) - Indexing vertex sequences
-
`[[`(<igraph.vs>) - Select vertices and show their metadata
-
print(<igraph.es>) - Print an edge sequence to the screen
-
print(<igraph.vs>) - Show a vertex sequence on the screen
-
c(<igraph.es>) - Concatenate edge sequences
-
c(<igraph.vs>) - Concatenate vertex sequences
-
difference(<igraph.es>) - Difference of edge sequences
-
difference(<igraph.vs>) - Difference of vertex sequences
-
intersection(<igraph.es>) - Intersection of edge sequences
-
intersection(<igraph.vs>) - Intersection of vertex sequences
-
rev(<igraph.es>) - Reverse the order in an edge sequence
-
rev(<igraph.vs>) - Reverse the order in a vertex sequence
-
union(<igraph.es>) - Union of edge sequences
-
union(<igraph.vs>) - Union of vertex sequences
-
unique(<igraph.es>) - Remove duplicate edges from an edge sequence
-
unique(<igraph.vs>) - Remove duplicate vertices from a vertex sequence
-
graph_id() - Get the id of a graph
-
identical_graphs() - Decide if two graphs are identical
-
is_igraph() - Is this object an igraph graph?
-
is_named() - Named graphs
-
is_weighted() - Weighted graphs
-
is_chordal() - Chordality of a graph
-
as.matrix(<igraph>) - Convert igraph objects to adjacency or edge list matrices
-
as_adj_list()as_adj_edge_list() - Adjacency lists
-
as_adjacency_matrix() - Convert a graph to an adjacency matrix
-
as_biadjacency_matrix() - Bipartite adjacency matrix of a bipartite graph
-
as_directed()as_undirected() - Convert between directed and undirected graphs
-
as_edgelist() - Convert a graph to an edge list
-
as_graphnel() - Convert igraph graphs to graphNEL objects from the graph package
-
as_long_data_frame() - Convert a graph to a long data frame
-
graph_from_adj_list() - Create graphs from adjacency lists
-
as_data_frame()graph_from_data_frame()from_data_frame() - Creating igraph graphs from data frames or vice-versa
-
graph_from_graphnel() - Convert graphNEL objects from the graph package to igraph
-
head_print() - Print the only the head of an R object
-
indent_print() - Indent a printout
-
print(<igraph>)summary(<igraph>) - Print graphs to the terminal
-
is_printer_callback() - Is this a printer callback?
-
printer_callback() - Create a printer callback function
-
sample_dirichlet() - Sample from a Dirichlet distribution
-
sample_sphere_surface() - Sample vectors uniformly from the surface of a sphere
-
sample_sphere_volume() - Sample vectors uniformly from the volume of a sphere
-
convex_hull() - Convex hull of a set of vertices
-
running_mean() - Running mean of a time series
-
sample_seq() - Sampling a random integer sequence
-
fit_power_law() - Fitting a power-law distribution function to discrete data
-
bfs() - Breadth-first search
-
component_distribution()largest_component()components()is_connected()count_components() - Connected components of a graph
-
constraint() - Burt's constraint
-
coreness() - K-core decomposition of graphs
-
degree()max_degree()degree_distribution() - Degree and degree distribution of the vertices
-
dfs() - Depth-first search
-
distance_table()mean_distance()distances()shortest_paths()all_shortest_paths() - Shortest (directed or undirected) paths between vertices
-
edge_density() - Graph density
-
connect()ego_size()neighborhood_size()ego()neighborhood()make_ego_graph()make_neighborhood_graph() - Neighborhood of graph vertices
-
feedback_arc_set() - Finding a feedback arc set in a graph
-
feedback_vertex_set()experimental - Finding a feedback vertex set in a graph
-
girth() - Girth of a graph
-
is_acyclic() - Acyclic graphs
-
is_dag() - Directed acyclic graphs
-
k_shortest_paths() - Find the \(k\) shortest paths between two vertices
-
knn() - Average nearest neighbor degree
-
is_matching()is_max_matching()max_bipartite_match() - Matching
-
reciprocity() - Reciprocity of graphs
-
subcomponent() - In- or out- component of a vertex
-
subgraph()induced_subgraph()subgraph_from_edges() - Subgraph of a graph
-
topo_sort() - Topological sorting of vertices in a graph
-
transitivity() - Transitivity of a graph
-
unfold_tree() - Convert a general graph into a forest
-
which_multiple()any_multiple()count_multiple()which_loop()any_loop() - Find the multiple or loop edges in a graph
-
which_mutual() - Find mutual edges in a directed graph
-
cocitation()bibcoupling() - Cocitation coupling
-
similarity() - Similarity measures of two vertices
-
cohesive_blocks()length(<cohesiveBlocks>)blocks()graphs_from_cohesive_blocks()cohesion(<cohesiveBlocks>)hierarchy()parent()print(<cohesiveBlocks>)summary(<cohesiveBlocks>)plot(<cohesiveBlocks>)plot_hierarchy()export_pajek()max_cohesion() - Calculate Cohesive Blocks
-
triangles()count_triangles() - Find triangles in graphs
-
assortativity()assortativity_nominal()assortativity_degree() - Assortativity coefficient
-
spectrum() - Eigenvalues and eigenvectors of the adjacency matrix of a graph
-
laplacian_matrix() - Graph Laplacian
-
as_adjacency_matrix() - Convert a graph to an adjacency matrix
-
stochastic_matrix() - Stochastic matrix of a graph
-
is_chordal() - Chordality of a graph
-
max_cardinality() - Maximum cardinality search
-
triangles()count_triangles() - Find triangles in graphs
-
transitivity() - Transitivity of a graph
-
all_simple_paths() - List all simple paths from one source
-
diameter()get_diameter()farthest_vertices() - Diameter of a graph
-
distance_table()mean_distance()distances()shortest_paths()all_shortest_paths() - Shortest (directed or undirected) paths between vertices
-
eccentricity() - Eccentricity of the vertices in a graph
-
graph_center()experimental - Central vertices of a graph
-
radius() - Radius of a graph
-
bipartite_mapping() - Decide whether a graph is bipartite
-
bipartite_projection()bipartite_projection_size() - Project a bipartite graph
-
is_bipartite() - Checks whether the graph has a vertex attribute called
type. -
make_bipartite_graph()bipartite_graph() - Create a bipartite graph
-
graph_from_biadjacency_matrix() - Create graphs from a bipartite adjacency matrix
-
as_data_frame()graph_from_data_frame()from_data_frame() - Creating igraph graphs from data frames or vice-versa
-
global_efficiency()local_efficiency()average_local_efficiency() - Efficiency of a graph
-
similarity() - Similarity measures of two vertices
-
is_forest() - Decide whether a graph is a forest.
-
is_tree() - Decide whether a graph is a tree.
-
make_from_prufer()from_prufer() - Create an undirected tree graph from its Prüfer sequence
-
sample_spanning_tree() - Samples from the spanning trees of a graph randomly and uniformly
-
to_prufer() - Convert a tree graph to its Prüfer sequence
-
mst() - Minimum spanning tree
-
adjacent_vertices() - Adjacent vertices of multiple vertices in a graph
-
are_adjacent() - Are two vertices adjacent?
-
ends() - Incident vertices of some graph edges
-
get_edge_ids() - Find the edge ids based on the incident vertices of the edges
-
vcount()gorder() - Order (number of vertices) of a graph
-
gsize()ecount() - The size of the graph (number of edges)
-
head_of() - Head of the edge(s) in a graph
-
incident() - Incident edges of a vertex in a graph
-
incident_edges() - Incident edges of multiple vertices in a graph
-
is_directed() - Check whether a graph is directed
-
neighbors() - Neighboring (adjacent) vertices in a graph
-
`[`(<igraph>) - Query and manipulate a graph as it were an adjacency matrix
-
`[[`(<igraph>) - Query and manipulate a graph as it were an adjacency list
-
tail_of() - Tails of the edge(s) in a graph
-
arpack_defaults()arpack() - ARPACK eigenvector calculation
-
alpha_centrality() - Find Bonacich alpha centrality scores of network positions
-
betweenness()edge_betweenness() - Vertex and edge betweenness centrality
-
closeness() - Closeness centrality of vertices
-
diversity() - Graph diversity
-
eigen_centrality() - Eigenvector centrality of vertices
-
harmonic_centrality() - Harmonic centrality of vertices
-
hits_scores() - Kleinberg's hub and authority centrality scores.
-
authority_score()hub_score() - Kleinberg's authority centrality scores.
-
page_rank() - The Page Rank algorithm
-
power_centrality() - Find Bonacich Power Centrality Scores of Network Positions
-
spectrum() - Eigenvalues and eigenvectors of the adjacency matrix of a graph
-
strength() - Strength or weighted vertex degree
-
subgraph_centrality() - Find subgraph centrality scores of network positions
-
centr_betw() - Centralize a graph according to the betweenness of vertices
-
centr_betw_tmax() - Theoretical maximum for betweenness centralization
-
centr_clo() - Centralize a graph according to the closeness of vertices
-
centr_clo_tmax() - Theoretical maximum for closeness centralization
-
centr_degree() - Centralize a graph according to the degrees of vertices
-
centr_degree_tmax() - Theoretical maximum for degree centralization
-
centr_eigen() - Centralize a graph according to the eigenvector centrality of vertices
-
centr_eigen_tmax() - Theoretical maximum for eigenvector centralization
-
centralize() - Centralization of a graph
-
local_scan() - Compute local scan statistics on graphs
-
scan_stat() - Scan statistics on a time series of graphs
-
count_motifs() - Graph motifs
-
dyad_census() - Dyad census of a graph
-
motifs() - Graph motifs
-
sample_motifs() - Graph motifs
-
triad_census() - Triad census, subgraphs with three vertices
-
canonical_permutation() - Canonical permutation of a graph
-
count_isomorphisms() - Count the number of isomorphic mappings between two graphs
-
count_subgraph_isomorphisms() - Count the isomorphic mappings between a graph and the subgraphs of another graph
-
graph_from_isomorphism_class() - Create a graph from an isomorphism class
-
isomorphic()is_isomorphic_to() - Decide if two graphs are isomorphic
-
isomorphism_class() - Isomorphism class of a graph
-
isomorphisms() - Calculate all isomorphic mappings between the vertices of two graphs
-
subgraph_isomorphic()is_subgraph_isomorphic_to() - Decide if a graph is subgraph isomorphic to another one
-
subgraph_isomorphisms() - All isomorphic mappings between a graph and subgraphs of another graph
-
simplify()is_simple()simplify_and_colorize() - Simple graphs
-
automorphism_group() - Generating set of the automorphism group of a graph
-
count_automorphisms() - Number of automorphisms
-
permute() - Permute the vertices of a graph
-
match_vertices() - Match Graphs given a seeding of vertex correspondences
-
dominator_tree() - Dominator tree
-
edge_connectivity()edge_disjoint_paths()adhesion() - Edge connectivity
-
is_min_separator() - Minimal vertex separators
-
is_separator() - Check whether removing this set of vertices would disconnect the graph.
-
max_flow() - Maximum flow in a graph
-
min_cut() - Minimum cut in a graph
-
min_separators() - Minimum size vertex separators
-
min_st_separators() - Minimum size vertex separators
-
st_cuts() - List all (s,t)-cuts of a graph
-
st_min_cuts() - List all minimum \((s,t)\)-cuts of a graph
-
vertex_connectivity()vertex_disjoint_paths()cohesion(<igraph>) - Vertex connectivity
-
cliques()largest_cliques()max_cliques()count_max_cliques()clique_num()largest_weighted_cliques()weighted_clique_num()clique_size_counts()is_clique() - Functions to find cliques, i.e. complete subgraphs in a graph
-
is_complete() - Is this a complete graph?
-
ivs()largest_ivs()max_ivs()ivs_size()independence_number()is_ivs() - Independent vertex sets
-
weighted_cliques() - Functions to find weighted cliques, i.e. vertex-weighted complete subgraphs in a graph
-
graphlet_basis()graphlet_proj()graphlets() - Graphlet decomposition of a graph
-
as_membership() - Declare a numeric vector as a membership vector
-
cluster_edge_betweenness() - Community structure detection based on edge betweenness
-
cluster_fast_greedy() - Community structure via greedy optimization of modularity
-
cluster_fluid_communities() - Community detection algorithm based on interacting fluids
-
cluster_infomap() - Infomap community finding
-
cluster_label_prop() - Finding communities based on propagating labels
-
cluster_leading_eigen() - Community structure detecting based on the leading eigenvector of the community matrix
-
cluster_leiden() - Finding community structure of a graph using the Leiden algorithm of Traag, van Eck & Waltman.
-
cluster_louvain() - Finding community structure by multi-level optimization of modularity
-
cluster_optimal() - Optimal community structure
-
cluster_spinglass() - Finding communities in graphs based on statistical meachanics
-
cluster_walktrap() - Community structure via short random walks
-
membership()print(<communities>)modularity(<communities>)length(<communities>)sizes()algorithm()merges()crossing()code_len()is_hierarchical()as.dendrogram(<communities>)as.hclust(<communities>)cut_at()show_trace()plot(<communities>)communities() - Functions to deal with the result of network community detection
-
compare() - Compares community structures using various metrics
-
groups() - Groups of a vertex partitioning
-
make_clusters() - Creates a communities object.
-
modularity(<igraph>)modularity_matrix() - Modularity of a community structure of a graph
-
plot_dendrogram() - Community structure dendrogram plots
-
split_join_distance() - Split-join distance of two community structures
-
voronoi_cells()experimental - Voronoi partitioning of a graph
-
feedback_arc_set() - Finding a feedback arc set in a graph
-
feedback_vertex_set()experimental - Finding a feedback vertex set in a graph
-
find_cycle()experimental - Finds a cycle in a graph, if there is one
-
girth() - Girth of a graph
-
has_eulerian_path()has_eulerian_cycle()eulerian_path()eulerian_cycle() - Find Eulerian paths or cycles in a graph
-
is_acyclic() - Acyclic graphs
-
is_dag() - Directed acyclic graphs
-
simple_cycles()experimental - Finds all simple cycles in a graph.
-
articulation_points()bridges() - Articulation points and bridges of a graph
-
biconnected_components() - Biconnected components
-
component_distribution()largest_component()components()is_connected()count_components() - Connected components of a graph
-
decompose() - Decompose a graph into components
-
is_biconnected()experimental - Check biconnectedness
-
dim_select() - Dimensionality selection for singular values using profile likelihood.
-
embed_adjacency_matrix() - Spectral Embedding of Adjacency Matrices
-
embed_laplacian_matrix() - Spectral Embedding of the Laplacian of a Graph
-
consensus_tree() - Create a consensus tree from several hierarchical random graph models
-
fit_hrg() - Fit a hierarchical random graph model
-
hrg-methods - Hierarchical random graphs
-
hrg() - Create a hierarchical random graph from an igraph graph
-
hrg_tree() - Create an igraph graph from a hierarchical random graph model
-
predict_edges() - Predict edges based on a hierarchical random graph model
-
print(<igraphHRG>) - Print a hierarchical random graph model to the screen
-
print(<igraphHRGConsensus>) - Print a hierarchical random graph consensus tree to the screen
-
sample_hrg() - Sample from a hierarchical random graph model
-
is_degseq() - Check if a degree sequence is valid for a multi-graph
-
is_graphical() - Is a degree sequence graphical?
-
plot(<sir>) - Plotting the results on multiple SIR model runs
-
time_bins()median(<sir>)quantile(<sir>)sir() - SIR model on graphs
-
random_walk()random_edge_walk() - Random walk on a graph
-
graph_from_graphdb() - Load a graph from the graph database for testing graph isomorphism.
-
read_graph() - Reading foreign file formats
-
write_graph() - Writing the graph to a file in some format
-
tkplot()tk_close()tk_off()tk_fit()tk_center()tk_reshape()tk_postscript()tk_coords()tk_set_coords()tk_rotate()tk_canvas() - Interactive plotting of graphs
-
console() - The igraph console
-
graph_version() - igraph data structure versions
-
upgrade_graph() - igraph data structure versions
-
feedback_vertex_set()experimental - Finding a feedback vertex set in a graph
-
find_cycle()experimental - Finds a cycle in a graph, if there is one
-
graph_center()experimental - Central vertices of a graph
-
is_biconnected()experimental - Check biconnectedness
-
realize_bipartite_degseq()experimental - Creating a bipartite graph from two degree sequences, deterministically
-
sample_chung_lu()chung_lu()experimental - Random graph with given expected degrees
-
simple_cycles()experimental - Finds all simple cycles in a graph.
-
voronoi_cells()experimental - Voronoi partitioning of a graph