Interface to the ARPACK library for calculating eigenvectors of sparse matrices
Usage
arpack_defaults()
arpack(
func,
extra = NULL,
sym = FALSE,
options = arpack_defaults(),
env = parent.frame(),
complex = !sym
)
Arguments
- func
The function to perform the matrix-vector multiplication. ARPACK requires to perform these by the user. The function gets the vector \(x\) as the first argument, and it should return \(Ax\), where \(A\) is the “input matrix”. (The input matrix is never given explicitly.) The second argument is
extra
.- extra
Extra argument to supply to
func
.- sym
Logical scalar, whether the input matrix is symmetric. Always supply
TRUE
here if it is, since it can speed up the computation.- options
Options to ARPACK, a named list to overwrite some of the default option values. See details below.
- env
The environment in which
func
will be evaluated.- complex
Whether to convert the eigenvectors returned by ARPACK into R complex vectors. By default this is not done for symmetric problems (these only have real eigenvectors/values), but only non-symmetric ones. If you have a non-symmetric problem, but you're sure that the results will be real, then supply
FALSE
here.
Value
A named list with the following members:
- values
Numeric vector, the desired eigenvalues.
- vectors
Numeric matrix, the desired eigenvectors as columns. If
complex=TRUE
(the default for non-symmetric problems), then the matrix is complex.- options
A named list with the supplied
options
and some information about the performed calculation, including an ARPACK exit code. See the details above.
Details
ARPACK is a library for solving large scale eigenvalue problems. The
package is designed to compute a few eigenvalues and corresponding
eigenvectors of a general \(n\) by \(n\) matrix \(A\). It is most
appropriate for large sparse or structured matrices \(A\) where structured
means that a matrix-vector product w <- Av
requires order \(n\)
rather than the usual order \(n^2\) floating point operations.
This function is an interface to ARPACK. igraph does not contain all ARPACK routines, only the ones dealing with symmetric and non-symmetric eigenvalue problems using double precision real numbers.
The eigenvalue calculation in ARPACK (in the simplest case) involves the
calculation of the \(Av\) product where \(A\) is the matrix we work with
and \(v\) is an arbitrary vector. The function supplied in the fun
argument is expected to perform this product. If the product can be done
efficiently, e.g. if the matrix is sparse, then arpack()
is usually
able to calculate the eigenvalues very quickly.
The options
argument specifies what kind of calculation to perform.
It is a list with the following members, they correspond directly to ARPACK
parameters. On input it has the following fields:
- bmat
Character constant, possible values: ‘
I
’, standard eigenvalue problem, \(Ax=\lambda x\); and ‘G
’, generalized eigenvalue problem, \(Ax=\lambda B x\). Currently only ‘I
’ is supported.- n
Numeric scalar. The dimension of the eigenproblem. You only need to set this if you call
arpack()
directly. (I.e. not needed foreigen_centrality()
,page_rank()
, etc.)- which
Specify which eigenvalues/vectors to compute, character constant with exactly two characters.
Possible values for symmetric input matrices:
- "LA"
Compute
nev
largest (algebraic) eigenvalues.- "SA"
Compute
nev
smallest (algebraic) eigenvalues.- "LM"
Compute
nev
largest (in magnitude) eigenvalues.- "SM"
Compute
nev
smallest (in magnitude) eigenvalues.- "BE"
Compute
nev
eigenvalues, half from each end of the spectrum. Whennev
is odd, compute one more from the high end than from the low end.
Possible values for non-symmetric input matrices:
- "LM"
Compute
nev
eigenvalues of largest magnitude.- "SM"
Compute
nev
eigenvalues of smallest magnitude.- "LR"
Compute
nev
eigenvalues of largest real part.- "SR"
Compute
nev
eigenvalues of smallest real part.- "LI"
Compute
nev
eigenvalues of largest imaginary part.- "SI"
Compute
nev
eigenvalues of smallest imaginary part.
This parameter is sometimes overwritten by the various functions, e.g.
page_rank()
always sets ‘LM
’.- nev
Numeric scalar. The number of eigenvalues to be computed.
- tol
Numeric scalar. Stopping criterion: the relative accuracy of the Ritz value is considered acceptable if its error is less than
tol
times its estimated value. If this is set to zero then machine precision is used.- ncv
Number of Lanczos vectors to be generated.
- ldv
Numberic scalar. It should be set to zero in the current implementation.
- ishift
Either zero or one. If zero then the shifts are provided by the user via reverse communication. If one then exact shifts with respect to the reduced tridiagonal matrix \(T\). Please always set this to one.
- maxiter
Maximum number of Arnoldi update iterations allowed.
- nb
Blocksize to be used in the recurrence. Please always leave this on the default value, one.
- mode
The type of the eigenproblem to be solved. Possible values if the input matrix is symmetric:
- 1
\(Ax=\lambda x\), \(A\) is symmetric.
- 2
\(Ax=\lambda Mx\), \(A\) is symmetric, \(M\) is symmetric positive definite.
- 3
\(Kx=\lambda Mx\), \(K\) is symmetric, \(M\) is symmetric positive semi-definite.
- 4
\(Kx=\lambda KGx\), \(K\) is symmetric positive semi-definite, \(KG\) is symmetric indefinite.
- 5
\(Ax=\lambda Mx\), \(A\) is symmetric, \(M\) is symmetric positive semi-definite. (Cayley transformed mode.)
Please note that only
mode==1
was tested and other values might not work properly.Possible values if the input matrix is not symmetric:
- 1
\(Ax=\lambda x\).
- 2
\(Ax=\lambda Mx\), \(M\) is symmetric positive definite.
- 3
\(Ax=\lambda Mx\), \(M\) is symmetric semi-definite.
- 4
\(Ax=\lambda Mx\), \(M\) is symmetric semi-definite.
Please note that only
mode==1
was tested and other values might not work properly.- start
Not used currently. Later it be used to set a starting vector.
- sigma
Not used currently.
- sigmai
Not use currently.
On output the following additional fields are added:
Please see the ARPACK documentation for additional details.
References
D.C. Sorensen, Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM J. Matr. Anal. Apps., 13 (1992), pp 357-385.
R.B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice University Technical Report TR95-13, Department of Computational and Applied Mathematics.
B.N. Parlett & Y. Saad, Complex Shift and Invert Strategies for Real Matrices. Linear Algebra and its Applications, vol 88/89, pp 575-595, (1987).
See also
eigen_centrality()
, page_rank()
,
hub_score()
, cluster_leading_eigen()
are some of the
functions in igraph that use ARPACK.
Author
Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, Chao Yang for ARPACK, Gabor Csardi csardi.gabor@gmail.com for the R interface.
Examples
# Identity matrix
f <- function(x, extra = NULL) x
arpack(f, options = list(n = 10, nev = 2, ncv = 4), sym = TRUE)
#> $values
#> [1] 1 1
#>
#> $vectors
#> [,1] [,2]
#> [1,] -0.3726998 0.112735486
#> [2,] 0.1195827 0.041517695
#> [3,] 0.4062664 -0.421475667
#> [4,] -0.4452969 -0.709645619
#> [5,] 0.3098338 0.177672414
#> [6,] 0.1653131 -0.125415897
#> [7,] -0.1946057 0.482549613
#> [8,] 0.4619532 0.006154024
#> [9,] -0.2346540 0.121470373
#> [10,] 0.2319333 -0.096874464
#>
#> $options
#> $options$bmat
#> [1] "I"
#>
#> $options$n
#> [1] 10
#>
#> $options$which
#> [1] "XX"
#>
#> $options$nev
#> [1] 2
#>
#> $options$tol
#> [1] 0
#>
#> $options$ncv
#> [1] 4
#>
#> $options$ldv
#> [1] 0
#>
#> $options$ishift
#> [1] 1
#>
#> $options$maxiter
#> [1] 3000
#>
#> $options$nb
#> [1] 1
#>
#> $options$mode
#> [1] 1
#>
#> $options$start
#> [1] 0
#>
#> $options$sigma
#> [1] 0
#>
#> $options$sigmai
#> [1] 0
#>
#> $options$info
#> [1] 0
#>
#> $options$iter
#> [1] 1
#>
#> $options$nconv
#> [1] 2
#>
#> $options$numop
#> [1] 4
#>
#> $options$numopb
#> [1] 0
#>
#> $options$numreo
#> [1] 4
#>
#>
# Graph laplacian of a star graph (undirected), n>=2
# Note that this is a linear operation
f <- function(x, extra = NULL) {
y <- x
y[1] <- (length(x) - 1) * x[1] - sum(x[-1])
for (i in 2:length(x)) {
y[i] <- x[i] - x[1]
}
y
}
arpack(f, options = list(n = 10, nev = 1, ncv = 3), sym = TRUE)
#> $values
#> [1] 10
#>
#> $vectors
#> [1] -0.9486833 0.1054093 0.1054093 0.1054093 0.1054093 0.1054093
#> [7] 0.1054093 0.1054093 0.1054093 0.1054093
#>
#> $options
#> $options$bmat
#> [1] "I"
#>
#> $options$n
#> [1] 10
#>
#> $options$which
#> [1] "XX"
#>
#> $options$nev
#> [1] 1
#>
#> $options$tol
#> [1] 0
#>
#> $options$ncv
#> [1] 3
#>
#> $options$ldv
#> [1] 0
#>
#> $options$ishift
#> [1] 1
#>
#> $options$maxiter
#> [1] 3000
#>
#> $options$nb
#> [1] 1
#>
#> $options$mode
#> [1] 1
#>
#> $options$start
#> [1] 0
#>
#> $options$sigma
#> [1] 0
#>
#> $options$sigmai
#> [1] 0
#>
#> $options$info
#> [1] 0
#>
#> $options$iter
#> [1] 1
#>
#> $options$nconv
#> [1] 1
#>
#> $options$numop
#> [1] 3
#>
#> $options$numopb
#> [1] 0
#>
#> $options$numreo
#> [1] 3
#>
#>
# double check
eigen(laplacian_matrix(make_star(10, mode = "undirected")))
#> eigen() decomposition
#> $values
#> [1] 1.000000e+01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [6] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 3.552714e-15
#>
#> $vectors
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.9486833 0.000000e+00 0.000000e+00 0.00000000 0.000000e+00
#> [2,] -0.1054093 -3.700743e-17 -3.700743e-17 0.00000000 -3.700743e-17
#> [3,] -0.1054093 -3.768958e-02 1.005977e-01 0.02684135 4.687454e-02
#> [4,] -0.1054093 3.537753e-01 -1.012990e-01 -0.08701190 -6.664397e-02
#> [5,] -0.1054093 -4.526060e-01 -4.556778e-01 -0.51370736 -3.394283e-01
#> [6,] -0.1054093 -3.384853e-01 -1.777216e-03 0.02479089 8.481572e-01
#> [7,] -0.1054093 -8.057222e-02 -1.154307e-02 0.01661573 -1.545983e-01
#> [8,] -0.1054093 5.759880e-01 -4.900096e-01 0.30166795 6.743751e-02
#> [9,] -0.1054093 3.180750e-01 6.685471e-01 -0.43654213 -4.340406e-02
#> [10,] -0.1054093 -3.384853e-01 2.911619e-01 0.66734547 -3.583947e-01
#> [,6] [,7] [,8] [,9] [,10]
#> [1,] 0.000000e+00 0.000000e+00 0.000000e+00 0.0000000 -0.3162278
#> [2,] 3.238150e-17 7.401487e-17 3.700743e-17 0.9428090 -0.3162278
#> [3,] -1.979763e-02 9.262957e-01 4.611153e-02 -0.1178511 -0.3162278
#> [4,] 8.482088e-01 -8.673487e-02 2.424907e-02 -0.1178511 -0.3162278
#> [5,] -1.084886e-01 -8.673487e-02 2.531916e-01 -0.1178511 -0.3162278
#> [6,] 4.196770e-02 -1.931187e-01 3.719095e-02 -0.1178511 -0.3162278
#> [7,] -1.084886e-01 -8.673487e-02 -9.082431e-01 -0.1178511 -0.3162278
#> [8,] -4.229128e-01 -8.673487e-02 1.455981e-01 -0.1178511 -0.3162278
#> [9,] -2.724565e-01 -1.931187e-01 1.513033e-01 -0.1178511 -0.3162278
#> [10,] 4.196770e-02 -1.931187e-01 2.505985e-01 -0.1178511 -0.3162278
#>
## First three eigenvalues of the adjacency matrix of a graph
## We need the 'Matrix' package for this
if (require(Matrix)) {
set.seed(42)
g <- sample_gnp(1000, 5 / 1000)
M <- as_adjacency_matrix(g, sparse = TRUE)
f2 <- function(x, extra = NULL) {
cat(".")
as.vector(M %*% x)
}
baev <- arpack(f2, sym = TRUE, options = list(
n = vcount(g), nev = 3, ncv = 8,
which = "LM", maxiter = 2000
))
}
#> Loading required package: Matrix
#> .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................