Skip to contents

Generate bipartite graphs using the Erdős-Rényi model

Usage

bipartite_gnm(...)

bipartite_gnp(...)

sample_bipartite_gnm(
  n1,
  n2,
  m,
  ...,
  directed = FALSE,
  mode = c("out", "in", "all")
)

sample_bipartite_gnp(
  n1,
  n2,
  p,
  ...,
  directed = FALSE,
  mode = c("out", "in", "all")
)

Arguments

...

Passed to sample_bipartite_gnp().

n1

Integer scalar, the number of bottom vertices.

n2

Integer scalar, the number of top vertices.

m

Integer scalar, the number of edges for \(G(n,m)\) graphs.

directed

Logical scalar, whether to create a directed graph. See also the mode argument.

mode

Character scalar, specifies how to direct the edges in directed graphs. If it is ‘out’, then directed edges point from bottom vertices to top vertices. If it is ‘in’, edges point from top vertices to bottom vertices. ‘out’ and ‘in’ do not generate mutual edges. If this argument is ‘all’, then each edge direction is considered independently and mutual edges might be generated. This argument is ignored for undirected graphs.

p

Real scalar, connection probability for \(G(n,p)\) graphs.

Details

Similarly to unipartite (one-mode) networks, we can define the \(G(n,p)\), and \(G(n,m)\) graph classes for bipartite graphs, via their generating process. In \(G(n,p)\) every possible edge between top and bottom vertices is realized with probability \(p\), independently of the rest of the edges. In \(G(n,m)\), we uniformly choose \(m\) edges to realize.

Examples


## empty graph
sample_bipartite_gnp(10, 5, p = 0)
#> IGRAPH b6e47c9 U--B 15 0 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from b6e47c9:

## full graph
sample_bipartite_gnp(10, 5, p = 1)
#> IGRAPH 18f594c U--B 15 50 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 18f594c:
#>  [1]  1--11  1--12  1--13  1--14  1--15  2--11  2--12  2--13  2--14  2--15
#> [11]  3--11  3--12  3--13  3--14  3--15  4--11  4--12  4--13  4--14  4--15
#> [21]  5--11  5--12  5--13  5--14  5--15  6--11  6--12  6--13  6--14  6--15
#> [31]  7--11  7--12  7--13  7--14  7--15  8--11  8--12  8--13  8--14  8--15
#> [41]  9--11  9--12  9--13  9--14  9--15 10--11 10--12 10--13 10--14 10--15

## random bipartite graph
sample_bipartite_gnp(10, 5, p = .1)
#> IGRAPH 996b0c2 U--B 15 2 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 996b0c2:
#> [1] 1--13 3--14

## directed bipartite graph, G(n,m)
sample_bipartite_gnm(10, 5, m = 20, directed = TRUE, mode = "all")
#> IGRAPH b821c6e D--B 15 20 -- Bipartite Gnm random graph
#> + attr: name (g/c), m (g/n), type (v/l)
#> + edges from b821c6e:
#>  [1]  4->11  9->11  3->13 10->13  2->14  5->14  6->14 10->14  3->15  7->15
#> [11] 13-> 3 15-> 3 12-> 4 15-> 5 11-> 6 12-> 6 11-> 7 15-> 7 11-> 9 12-> 9