Generate bipartite graphs using the Erdős-Rényi model
Arguments
- ...
Passed to
sample_bipartite_gnp()
.- n1
Integer scalar, the number of bottom vertices.
- n2
Integer scalar, the number of top vertices.
- m
Integer scalar, the number of edges for \(G(n,m)\) graphs.
- directed
Logical scalar, whether to create a directed graph. See also the
mode
argument.- mode
Character scalar, specifies how to direct the edges in directed graphs. If it is ‘out’, then directed edges point from bottom vertices to top vertices. If it is ‘in’, edges point from top vertices to bottom vertices. ‘out’ and ‘in’ do not generate mutual edges. If this argument is ‘all’, then each edge direction is considered independently and mutual edges might be generated. This argument is ignored for undirected graphs.
- p
Real scalar, connection probability for \(G(n,p)\) graphs.
Details
Similarly to unipartite (one-mode) networks, we can define the \(G(n,p)\), and \(G(n,m)\) graph classes for bipartite graphs, via their generating process. In \(G(n,p)\) every possible edge between top and bottom vertices is realized with probability \(p\), independently of the rest of the edges. In \(G(n,m)\), we uniformly choose \(m\) edges to realize.
See also
Random graph models (games)
erdos.renyi.game()
,
sample_()
,
sample_bipartite()
,
sample_chung_lu()
,
sample_correlated_gnp()
,
sample_correlated_gnp_pair()
,
sample_degseq()
,
sample_dot_product()
,
sample_fitness()
,
sample_fitness_pl()
,
sample_forestfire()
,
sample_gnm()
,
sample_gnp()
,
sample_grg()
,
sample_growing()
,
sample_hierarchical_sbm()
,
sample_islands()
,
sample_k_regular()
,
sample_last_cit()
,
sample_pa()
,
sample_pa_age()
,
sample_pref()
,
sample_sbm()
,
sample_smallworld()
,
sample_traits_callaway()
,
sample_tree()
Examples
## empty graph
sample_bipartite_gnp(10, 5, p = 0)
#> IGRAPH 02d3c57 U--B 15 0 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 02d3c57:
## full graph
sample_bipartite_gnp(10, 5, p = 1)
#> IGRAPH 3806c72 U--B 15 50 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 3806c72:
#> [1] 1--11 1--12 1--13 1--14 1--15 2--11 2--12 2--13 2--14 2--15
#> [11] 3--11 3--12 3--13 3--14 3--15 4--11 4--12 4--13 4--14 4--15
#> [21] 5--11 5--12 5--13 5--14 5--15 6--11 6--12 6--13 6--14 6--15
#> [31] 7--11 7--12 7--13 7--14 7--15 8--11 8--12 8--13 8--14 8--15
#> [41] 9--11 9--12 9--13 9--14 9--15 10--11 10--12 10--13 10--14 10--15
## random bipartite graph
sample_bipartite_gnp(10, 5, p = .1)
#> IGRAPH d4bb300 U--B 15 2 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from d4bb300:
#> [1] 1--13 3--14
## directed bipartite graph, G(n,m)
sample_bipartite_gnm(10, 5, m = 20, directed = TRUE, mode = "all")
#> IGRAPH da291b5 D--B 15 20 -- Bipartite Gnm random graph
#> + attr: name (g/c), m (g/n), type (v/l)
#> + edges from da291b5:
#> [1] 4->11 9->11 3->13 10->13 2->14 5->14 6->14 10->14 3->15 7->15
#> [11] 13-> 3 15-> 3 12-> 4 15-> 5 11-> 6 12-> 6 11-> 7 15-> 7 11-> 9 12-> 9