Generate bipartite graphs using the Erdős-Rényi model
Usage
bipartite_gnm(n1, n2, m, ..., directed = FALSE, mode = c("out", "in", "all"))
bipartite_gnp(n1, n2, p, ..., directed = FALSE, mode = c("out", "in", "all"))
sample_bipartite_gnm(
n1,
n2,
m,
...,
directed = FALSE,
mode = c("out", "in", "all")
)
sample_bipartite_gnp(
n1,
n2,
p,
...,
directed = FALSE,
mode = c("out", "in", "all")
)Arguments
- n1
Integer scalar, the number of bottom vertices.
- n2
Integer scalar, the number of top vertices.
- m
Integer scalar, the number of edges for \(G(n,m)\) graphs.
- ...
These dots are for future extensions and must be empty.
- directed
Logical scalar, whether to create a directed graph. See also the
modeargument.- mode
Character scalar, specifies how to direct the edges in directed graphs. If it is ‘out’, then directed edges point from bottom vertices to top vertices. If it is ‘in’, edges point from top vertices to bottom vertices. ‘out’ and ‘in’ do not generate mutual edges. If this argument is ‘all’, then each edge direction is considered independently and mutual edges might be generated. This argument is ignored for undirected graphs.
- p
Real scalar, connection probability for \(G(n,p)\) graphs.
Details
Similarly to unipartite (one-mode) networks, we can define the \(G(n,p)\), and \(G(n,m)\) graph classes for bipartite graphs, via their generating process. In \(G(n,p)\) every possible edge between top and bottom vertices is realized with probability \(p\), independently of the rest of the edges. In \(G(n,m)\), we uniformly choose \(m\) edges to realize.
See also
Random graph models (games)
erdos.renyi.game(),
sample_(),
sample_bipartite(),
sample_chung_lu(),
sample_correlated_gnp(),
sample_correlated_gnp_pair(),
sample_degseq(),
sample_dot_product(),
sample_fitness(),
sample_fitness_pl(),
sample_forestfire(),
sample_gnm(),
sample_gnp(),
sample_grg(),
sample_growing(),
sample_hierarchical_sbm(),
sample_islands(),
sample_k_regular(),
sample_last_cit(),
sample_pa(),
sample_pa_age(),
sample_pref(),
sample_sbm(),
sample_smallworld(),
sample_traits_callaway(),
sample_tree()
Examples
## empty graph
sample_bipartite_gnp(10, 5, p = 0)
#> IGRAPH 4d0c52f U--B 15 0 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 4d0c52f:
## full graph
sample_bipartite_gnp(10, 5, p = 1)
#> IGRAPH 01a86a6 U--B 15 50 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 01a86a6:
#> [1] 1--11 1--12 1--13 1--14 1--15 2--11 2--12 2--13 2--14 2--15
#> [11] 3--11 3--12 3--13 3--14 3--15 4--11 4--12 4--13 4--14 4--15
#> [21] 5--11 5--12 5--13 5--14 5--15 6--11 6--12 6--13 6--14 6--15
#> [31] 7--11 7--12 7--13 7--14 7--15 8--11 8--12 8--13 8--14 8--15
#> [41] 9--11 9--12 9--13 9--14 9--15 10--11 10--12 10--13 10--14 10--15
## random bipartite graph
sample_bipartite_gnp(10, 5, p = .1)
#> IGRAPH 86e042c U--B 15 2 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from 86e042c:
#> [1] 2--11 6--11
## directed bipartite graph, G(n,m)
sample_bipartite_gnm(10, 5, m = 20, directed = TRUE, mode = "all")
#> IGRAPH 3e7f2ae D--B 15 20 -- Bipartite Gnm random graph
#> + attr: name (g/c), m (g/n), type (v/l)
#> + edges from 3e7f2ae:
#> [1] 1->11 5->11 8->11 10->12 1->13 8->14 5->15 7->15 12-> 1 13-> 1
#> [11] 14-> 3 15-> 3 11-> 4 13-> 4 11-> 5 13-> 5 14-> 6 15-> 7 13-> 8 12->10
