This is useful if you want to use functions defined on membership vectors, but your membership vector does not come from an igraph clustering method.
See also
Community detection
cluster_edge_betweenness(),
cluster_fast_greedy(),
cluster_fluid_communities(),
cluster_infomap(),
cluster_label_prop(),
cluster_leading_eigen(),
cluster_leiden(),
cluster_louvain(),
cluster_optimal(),
cluster_spinglass(),
cluster_walktrap(),
compare(),
groups(),
make_clusters(),
membership(),
modularity.igraph(),
plot_dendrogram(),
split_join_distance(),
voronoi_cells()
Examples
## Compare to the correct clustering
g <- (make_full_graph(10) + make_full_graph(10)) %>%
rewire(each_edge(p = 0.2))
correct <- rep(1:2, each = 10) %>% as_membership()
fc <- cluster_fast_greedy(g)
compare(correct, fc)
#> [1] 0
compare(correct, membership(fc))
#> [1] 0
