Maximum cardinality search is a simple ordering a vertices that is useful in determining the chordality of a graph.
Value
A list with two components:
- alpha
Numeric vector. The 1-based rank of each vertex in the graph such that the vertex with rank 1 is visited first, the vertex with rank 2 is visited second and so on.
- alpham1
Numeric vector. The inverse of
alpha
. In other words, the elements of this vector are the vertices in reverse maximum cardinality search order.
Details
Maximum cardinality search visits the vertices in such an order that every time the vertex with the most already visited neighbors is visited. Ties are broken randomly.
The algorithm provides a simple basis for deciding whether a graph is
chordal, see References below, and also is_chordal()
.
References
Robert E Tarjan and Mihalis Yannakakis. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Computation 13, 566–579.
See also
Other chordal:
is_chordal()
Author
Gabor Csardi csardi.gabor@gmail.com
Examples
## The examples from the Tarjan-Yannakakis paper
g1 <- graph_from_literal(
A - B:C:I, B - A:C:D, C - A:B:E:H, D - B:E:F,
E - C:D:F:H, F - D:E:G, G - F:H, H - C:E:G:I,
I - A:H
)
max_cardinality(g1)
#> $alpha
#> [1] 9 4 6 8 3 5 7 2 1
#>
#> $alpham1
#> + 9/9 vertices, named, from 0b198ba:
#> [1] G F D B E C H I A
#>
is_chordal(g1, fillin = TRUE)
#> $chordal
#> [1] FALSE
#>
#> $fillin
#> [1] 2 6 8 7 5 7 2 7 6 1 7 1
#>
#> $newgraph
#> NULL
#>
g2 <- graph_from_literal(
A - B:E, B - A:E:F:D, C - E:D:G, D - B:F:E:C:G,
E - A:B:C:D:F, F - B:D:E, G - C:D:H:I, H - G:I:J,
I - G:H:J, J - H:I
)
max_cardinality(g2)
#> $alpha
#> [1] 10 8 9 6 7 5 4 2 3 1
#>
#> $alpham1
#> + 10/10 vertices, named, from 6f9cd39:
#> [1] J H I G C F D B E A
#>
is_chordal(g2, fillin = TRUE)
#> $chordal
#> [1] TRUE
#>
#> $fillin
#> numeric(0)
#>
#> $newgraph
#> NULL
#>