The k-core of graph is a maximal subgraph in which each vertex has at least degree k. The coreness of a vertex is k if it belongs to the k-core but not to the (k+1)-core.
Usage
coreness(graph, mode = c("all", "out", "in"))
Details
The k-core of a graph is the maximal subgraph in which every vertex has at least degree k. The cores of a graph form layers: the (k+1)-core is always a subgraph of the k-core.
This function calculates the coreness for each vertex.
References
Vladimir Batagelj, Matjaz Zaversnik: An O(m) Algorithm for Cores Decomposition of Networks, 2002
Seidman S. B. (1983) Network structure and minimum degree, Social Networks, 5, 269–287.
See also
Other structural.properties:
bfs()
,
component_distribution()
,
connect()
,
constraint()
,
degree()
,
dfs()
,
distance_table()
,
edge_density()
,
feedback_arc_set()
,
girth()
,
is_acyclic()
,
is_dag()
,
is_matching()
,
k_shortest_paths()
,
knn()
,
reciprocity()
,
subcomponent()
,
subgraph()
,
topo_sort()
,
transitivity()
,
unfold_tree()
,
which_multiple()
,
which_mutual()
Author
Gabor Csardi csardi.gabor@gmail.com