A ring is a one-dimensional lattice and this function is a special case of make_lattice().

## Usage

make_ring(n, directed = FALSE, mutual = FALSE, circular = TRUE)

ring(...)

## Arguments

n

Number of vertices.

directed

Whether the graph is directed.

mutual

Whether directed edges are mutual. It is ignored in undirected graphs.

circular

Whether to create a circular ring. A non-circular ring is essentially a “line”: a tree where every non-leaf vertex has one child.

...

Passed to make_ring().

## Value

An igraph graph.

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(), make_graph(), make_lattice(), make_star(), make_tree()

## Examples

print_all(make_ring(10))
#> IGRAPH 224d632 U--- 10 10 -- Ring graph
#> + attr: name (g/c), mutual (g/l), circular (g/l)
#> + graph attributes:
#> | + name:
#> |   [1] "Ring graph"
#> | + mutual:
#> |   [1] FALSE
#> | + circular:
#> |   [1] TRUE
#> + edges from 224d632:
#>  [1] 1-- 2 2-- 3 3-- 4 4-- 5 5-- 6 6-- 7 7-- 8 8-- 9 9--10 1--10
print_all(make_ring(10, directed = TRUE, mutual = TRUE))
#> IGRAPH 65d1fc6 D--- 10 20 -- Ring graph
#> + attr: name (g/c), mutual (g/l), circular (g/l)
#> + graph attributes:
#> | + name:
#> |   [1] "Ring graph"
#> | + mutual:
#> |   [1] TRUE
#> | + circular:
#> |   [1] TRUE
#> + edges from 65d1fc6:
#>  [1]  1-> 2  2-> 1  2-> 3  3-> 2  3-> 4  4-> 3  4-> 5  5-> 4  5-> 6  6-> 5
#> [11]  6-> 7  7-> 6  7-> 8  8-> 7  8-> 9  9-> 8  9->10 10-> 9 10-> 1  1->10