A ring is a one-dimensional lattice and this function is a special case
of `make_lattice()`

.

## Arguments

- n
Number of vertices.

- directed
Whether the graph is directed.

- mutual
Whether directed edges are mutual. It is ignored in undirected graphs.

- circular
Whether to create a circular ring. A non-circular ring is essentially a “line”: a tree where every non-leaf vertex has one child.

- ...
Passed to

`make_ring()`

.

## See also

Other deterministic constructors:
`graph_from_atlas()`

,
`graph_from_edgelist()`

,
`graph_from_literal()`

,
`make_chordal_ring()`

,
`make_empty_graph()`

,
`make_full_citation_graph()`

,
`make_full_graph()`

,
`make_graph()`

,
`make_lattice()`

,
`make_star()`

,
`make_tree()`

## Examples

```
print_all(make_ring(10))
#> IGRAPH 224d632 U--- 10 10 -- Ring graph
#> + attr: name (g/c), mutual (g/l), circular (g/l)
#> + graph attributes:
#> | + name:
#> | [1] "Ring graph"
#> | + mutual:
#> | [1] FALSE
#> | + circular:
#> | [1] TRUE
#> + edges from 224d632:
#> [1] 1-- 2 2-- 3 3-- 4 4-- 5 5-- 6 6-- 7 7-- 8 8-- 9 9--10 1--10
print_all(make_ring(10, directed = TRUE, mutual = TRUE))
#> IGRAPH 65d1fc6 D--- 10 20 -- Ring graph
#> + attr: name (g/c), mutual (g/l), circular (g/l)
#> + graph attributes:
#> | + name:
#> | [1] "Ring graph"
#> | + mutual:
#> | [1] TRUE
#> | + circular:
#> | [1] TRUE
#> + edges from 65d1fc6:
#> [1] 1-> 2 2-> 1 2-> 3 3-> 2 3-> 4 4-> 3 4-> 5 5-> 4 5-> 6 6-> 5
#> [11] 6-> 7 7-> 6 7-> 8 8-> 7 8-> 9 9-> 8 9->10 10-> 9 10-> 1 1->10
```