Create a new graph, by permuting vertex ids.

## Usage

permute(graph, permutation)

## Arguments

graph

The input graph, it can directed or undirected.

permutation

A numeric vector giving the permutation to apply. The first element is the new id of vertex 1, etc. Every number between one and vcount(graph) must appear exactly once.

## Value

A new graph object.

## Details

This function creates a new graph from the input graph by permuting its vertices according to the specified mapping. Call this function with the output of canonical_permutation() to create the canonical form of a graph.

permute() keeps all graph, vertex and edge attributes of the graph.

canonical_permutation()

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(), complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(), difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

## Author

Gabor Csardi csardi.gabor@gmail.com

## Examples


# Random permutation of a random graph
g <- sample_gnm(20, 50)
g2 <- permute(g, sample(vcount(g)))
graph.isomorphic(g, g2)
#> [1] TRUE

# Permutation keeps all attributes
g$name <- "Random graph, Gnm, 20, 50" V(g)$name <- letters[1:vcount(g)]
E(g)$weight <- sample(1:5, ecount(g), replace = TRUE) g2 <- permute(g, sample(vcount(g))) graph.isomorphic(g, g2) #> [1] TRUE g2$name
#> [1] "Random graph, Gnm, 20, 50"
V(g2)$name #> [1] "i" "l" "b" "n" "t" "s" "f" "e" "k" "j" "q" "o" "d" "c" "p" "g" "m" "r" "a" #> [20] "h" E(g2)$weight
#>  [1] 3 1 1 1 4 2 1 5 5 1 2 3 3 5 3 1 1 2 5 4 1 4 5 5 5 4 4 1 3 1 1 4 3 3 5 5 5 3
#> [39] 3 2 4 5 4 2 2 4 1 2 3 2
all(sort(E(g2)$weight) == sort(E(g)$weight))
#> [1] TRUE