Create a new graph, by permuting vertex ids.

## Arguments

- graph
The input graph, it can directed or undirected.

- permutation
A numeric vector giving the permutation to apply. The first element is the new id of vertex 1, etc. Every number between one and

`vcount(graph)`

must appear exactly once.

## Details

This function creates a new graph from the input graph by permuting its
vertices according to the specified mapping. Call this function with the
output of `canonical_permutation()`

to create the canonical form
of a graph.

`permute()`

keeps all graph, vertex and edge attributes of the graph.

## See also

Other functions for manipulating graph structure:
`+.igraph()`

,
`add_edges()`

,
`add_vertices()`

,
`complementer()`

,
`compose()`

,
`connect()`

,
`contract()`

,
`delete_edges()`

,
`delete_vertices()`

,
`difference.igraph()`

,
`difference()`

,
`disjoint_union()`

,
`edge()`

,
`igraph-minus`

,
`intersection.igraph()`

,
`intersection()`

,
`path()`

,
`rep.igraph()`

,
`reverse_edges()`

,
`simplify()`

,
`union.igraph()`

,
`union()`

,
`vertex()`

## Author

Gabor Csardi csardi.gabor@gmail.com

## Examples

```
# Random permutation of a random graph
g <- sample_gnm(20, 50)
g2 <- permute(g, sample(vcount(g)))
graph.isomorphic(g, g2)
#> [1] TRUE
# Permutation keeps all attributes
g$name <- "Random graph, Gnm, 20, 50"
V(g)$name <- letters[1:vcount(g)]
E(g)$weight <- sample(1:5, ecount(g), replace = TRUE)
g2 <- permute(g, sample(vcount(g)))
graph.isomorphic(g, g2)
#> [1] TRUE
g2$name
#> [1] "Random graph, Gnm, 20, 50"
V(g2)$name
#> [1] "g" "f" "t" "d" "p" "q" "l" "r" "k" "o" "c" "m" "e" "a" "h" "n" "j" "i" "s"
#> [20] "b"
E(g2)$weight
#> [1] 4 1 5 4 4 1 1 4 4 1 5 4 5 5 3 5 4 4 4 3 4 4 1 3 3 5 5 3 3 1 3 5 3 1 5 5 3 4
#> [39] 1 3 2 5 2 1 5 5 1 4 4 3
all(sort(E(g2)$weight) == sort(E(g)$weight))
#> [1] TRUE
```