Create a new graph, by permuting vertex ids.
Details
This function creates a new graph from the input graph by permuting its
vertices according to the specified mapping. Call this function with the
output of canonical_permutation()
to create the canonical form
of a graph.
permute()
keeps all graph, vertex and edge attributes of the graph.
See also
Other functions for manipulating graph structure:
+.igraph()
,
add_edges()
,
add_vertices()
,
complementer()
,
compose()
,
connect()
,
contract()
,
delete_edges()
,
delete_vertices()
,
difference()
,
difference.igraph()
,
disjoint_union()
,
edge()
,
igraph-minus
,
intersection()
,
intersection.igraph()
,
path()
,
rep.igraph()
,
reverse_edges()
,
simplify()
,
union()
,
union.igraph()
,
vertex()
Author
Gabor Csardi csardi.gabor@gmail.com
Examples
# Random permutation of a random graph
g <- sample_gnm(20, 50)
g2 <- permute(g, sample(vcount(g)))
graph.isomorphic(g, g2)
#> [1] TRUE
# Permutation keeps all attributes
g$name <- "Random graph, Gnm, 20, 50"
V(g)$name <- letters[1:vcount(g)]
E(g)$weight <- sample(1:5, ecount(g), replace = TRUE)
g2 <- permute(g, sample(vcount(g)))
graph.isomorphic(g, g2)
#> [1] TRUE
g2$name
#> [1] "Random graph, Gnm, 20, 50"
V(g2)$name
#> [1] "h" "e" "n" "d" "p" "r" "a" "s" "m" "f" "j" "g" "c" "o" "i" "b" "q" "t" "l"
#> [20] "k"
E(g2)$weight
#> [1] 3 5 2 3 4 2 1 3 2 4 3 1 1 1 4 2 1 5 5 1 2 3 3 5 3 1 1 2 5 4 1 4 5 5 5 4 4 1
#> [39] 3 1 1 4 3 3 5 5 5 3 3 2
all(sort(E(g2)$weight) == sort(E(g)$weight))
#> [1] TRUE