
Improving igraph interface: current deprecations
Source:vignettes/articles/current-deprecations.Rmd
current-deprecations.Rmd
To provide a more consistent interface, part of igraph functions or arguments are slowly but consistently being deprecated. You can follow along the current level of deprecations in the table below.
Please update your codebases as soon as you can, be they packages or scripts. To do that, run your code in a session where you installed the latest igraph version, possibly even the development version that you can install from R-universe:
options(
repos = c(
igraph = 'https://igraph.r-universe.dev',
CRAN = 'https://cloud.r-project.org'
)
)
install.packages('igraph')
And pay attention to any message emitted through the lifecycle package.
Thank you for your cooperation! Direct any question to us in the igraph issue tracker.
level | version | old | new |
---|---|---|---|
1 – soft | 2.0.0 | graph.adjacency() | graph_from_adjacency_matrix() |
1 – soft | 1.6.0 | graph_from_adjacency_matrix(adjmatrix = ‘must be a matrix’) | |
1 – soft | 1.6.0 | graph_from_adjacency_matrix(adjmatrix = ‘must be symmetric with mode = "undirected"’) | Use mode = “max” to achieve the original behavior. |
1 – soft | 1.5.0 | ape::as.phylo() | |
1 – soft | 2.0.0 | assortativity.nominal() | assortativity_nominal() |
1 – soft | 2.0.0 | assortativity.degree() | assortativity_degree() |
1 – soft | 1.6.0 | assortativity(… =) | Arguments values and
values.in must be named. |
1 – soft | 1.6.0 | assortativity(types1 =) | assortativity(values =) |
1 – soft | 1.6.0 | assortativity(types2 =) | assortativity(values.in =) |
1 – soft | 2.0.0 | set.vertex.attribute() | set_vertex_attr() |
1 – soft | 2.0.0 | set.graph.attribute() | set_graph_attr() |
1 – soft | 2.0.0 | set.edge.attribute() | set_edge_attr() |
1 – soft | 2.0.0 | remove.vertex.attribute() | delete_vertex_attr() |
1 – soft | 2.0.0 | remove.graph.attribute() | delete_graph_attr() |
1 – soft | 2.0.0 | remove.edge.attribute() | delete_edge_attr() |
1 – soft | 2.0.0 | list.vertex.attributes() | vertex_attr_names() |
1 – soft | 2.0.0 | list.graph.attributes() | graph_attr_names() |
1 – soft | 2.0.0 | list.edge.attributes() | edge_attr_names() |
1 – soft | 2.0.0 | is.weighted() | is_weighted() |
1 – soft | 2.0.0 | is.named() | is_named() |
1 – soft | 2.0.0 | is.bipartite() | is_bipartite() |
1 – soft | 2.0.0 | get.vertex.attribute() | vertex_attr() |
1 – soft | 2.0.0 | get.graph.attribute() | graph_attr() |
1 – soft | 2.0.0 | get.edge.attribute() | edge_attr() |
1 – soft | 2.0.0 | is.igraph() | is_igraph() |
3 – stop | 2.1.0 | get.edge() | ends() |
1 – soft | 2.0.0 | bipartite.projection.size() | bipartite_projection_size() |
1 – soft | 2.0.0 | bipartite.projection() | bipartite_projection() |
1 – soft | 2.0.0 | bipartite.mapping() | bipartite_mapping() |
1 – soft | 2.0.0 | subgraph.centrality() | subgraph_centrality() |
1 – soft | 2.0.0 | page.rank() | page_rank() |
2 – warn | 2.0.0 | hub.score() | hits_scores() |
2 – warn | 2.0.0 | authority.score() | hits_scores() |
1 – soft | 2.0.0 | graph.strength() | strength() |
1 – soft | 2.0.0 | graph.eigen() | spectrum() |
1 – soft | 2.0.0 | graph.diversity() | diversity() |
1 – soft | 2.0.0 | evcent() | eigen_centrality() |
1 – soft | 2.0.0 | edge.betweenness() | edge_betweenness() |
1 – soft | 2.0.0 | bonpow() | power_centrality() |
1 – soft | 2.0.0 | alpha.centrality() | alpha_centrality() |
1 – soft | 1.6.0 | estimate_betweenness() | betweenness() |
1 – soft | 1.6.0 | estimate_edge_betweenness() | edge_betweenness() |
1 – soft | 1.6.0 | estimate_closeness() | closeness() |
1 – soft | 1.6.0 | arpack(options = ‘must be a list’) | c(“arpack_defaults() is now a function,
use options = arpack_defaults() instead of
options = arpack_defaults .”) |
1 – soft | 1.6.0 | spectrum(options = ‘must be a list’) | c(“arpack_defaults() is now a function,
use options = arpack_defaults() instead of
options = arpack_defaults .”) |
1 – soft | 1.6.0 | eigen_centrality(options = ‘must be a list’) | c(“arpack_defaults() is now a function,
use options = arpack_defaults() instead of
options = arpack_defaults .”) |
1 – soft | 2.1.1 | eigen_centrality(scale) | eigen_centrality() will always behave as if scale=TRUE were used. |
2 – warn | 2.1.1 | eigen_centrality(scale = ‘always as if TRUE’) | Normalization is always performed |
1 – soft | 2.1.0 | authority_score() | hits_scores() |
1 – soft | 1.6.0 | I(“arpack_defaults”) | arpack_defaults() |
1 – soft | 2.0.3 | hub_score() | hits_scores() |
1 – soft | 1.6.0 | I(“arpack_defaults”) | arpack_defaults() |
1 – soft | 2.0.0 | centralize.scores() | centralize() |
1 – soft | 2.0.0 | centralization.evcent.tmax() | centr_eigen_tmax() |
1 – soft | 2.0.0 | centralization.evcent() | centr_eigen() |
1 – soft | 2.0.0 | centralization.degree.tmax() | centr_degree_tmax() |
1 – soft | 2.0.0 | centralization.degree() | centr_degree() |
1 – soft | 2.0.0 | centralization.closeness.tmax() | centr_clo_tmax() |
1 – soft | 2.0.0 | centralization.closeness() | centr_clo() |
1 – soft | 2.0.0 | centralization.betweenness.tmax() | centr_betw_tmax() |
1 – soft | 2.0.0 | centralization.betweenness() | centr_betw() |
2 – warn | 2.0.0 | centr_degree_tmax(loops = ‘must be explicit’) | The default value (currently FALSE ) will
be dropped in the next release. Add an explicit value for the
loops argument. |
1 – soft | 2.2.0 | centr_eigen(scale = ) | The function always behaves as if
scale = TRUE . |
The argument will be removed in the future. | |||
1 – soft | 2.2.0 | centr_eigen_tmax(scale = ) | The function always behaves as if
scale = TRUE . |
The argument will be removed in the future. | |||
1 – soft | 2.0.0 | maximal.independent.vertex.sets() | max_ivs() |
1 – soft | 2.0.0 | maximal.cliques.count() | count_max_cliques() |
1 – soft | 2.0.0 | maximal.cliques() | max_cliques() |
1 – soft | 2.0.0 | largest.independent.vertex.sets() | largest_ivs() |
1 – soft | 2.0.0 | largest.cliques() | largest_cliques() |
1 – soft | 2.0.0 | independent.vertex.sets() | ivs() |
1 – soft | 2.0.0 | independence.number() | ivs_size() |
1 – soft | 2.0.0 | clique.number() | clique_num() |
1 – soft | 2.1.0 | maximal_ivs() | max_ivs() |
1 – soft | 2.0.0 | exportPajek() | export_pajek() |
1 – soft | 2.0.0 | plotHierarchy() | plot_hierarchy() |
1 – soft | 2.0.0 | maxcohesion() | max_cohesion() |
1 – soft | 2.0.0 | graph.cohesion() | cohesion() |
1 – soft | 2.0.0 | cohesive.blocks() | cohesive_blocks() |
1 – soft | 2.0.0 | blockGraphs() | graphs_from_cohesive_blocks() |
1 – soft | 2.0.0 | create.communities() | make_clusters() |
1 – soft | 2.0.0 | walktrap.community() | cluster_walktrap() |
1 – soft | 2.0.0 | spinglass.community() | cluster_spinglass() |
1 – soft | 2.0.0 | showtrace() | show_trace() |
1 – soft | 2.0.0 | optimal.community() | cluster_optimal() |
1 – soft | 2.0.0 | multilevel.community() | cluster_louvain() |
1 – soft | 2.0.0 | mod.matrix() | modularity_matrix() |
1 – soft | 2.0.0 | leading.eigenvector.community() | cluster_leading_eigen() |
1 – soft | 2.0.0 | label.propagation.community() | cluster_label_prop() |
1 – soft | 2.0.0 | is.hierarchical() | is_hierarchical() |
1 – soft | 2.0.0 | infomap.community() | cluster_infomap() |
1 – soft | 2.0.0 | fastgreedy.community() | cluster_fast_greedy() |
1 – soft | 2.0.0 | edge.betweenness.community() | cluster_edge_betweenness() |
1 – soft | 2.0.0 | dendPlot() | plot_dendrogram() |
1 – soft | 2.0.0 | cutat() | cut_at() |
1 – soft | 2.0.0 | contract.vertices() | contract() |
1 – soft | 2.0.0 | code.length() | code_len() |
2 – warn | 2.1.0 | modularity_matrix(membership = ‘is no longer used’) | |
1 – soft | 2.1.0 | cluster_leiden(resolution_parameter) | cluster_leiden(resolution) |
1 – soft | 1.6.0 | cluster_leading_eigen(options = ‘must be a list’) | c(“arpack_defaults() is now a function,
use options = arpack_defaults() instead of
options = arpack_defaults .”) |
1 – soft | 1.6.0 | cluster_label_prop(… = ) | Arguments initial and fixed
must be named. |
1 – soft | 2.0.0 | no.clusters() | count_components() |
1 – soft | 2.0.0 | decompose.graph() | decompose() |
1 – soft | 2.0.0 | cluster.distribution() | component_distribution() |
1 – soft | 2.0.0 | biconnected.components() | biconnected_components() |
1 – soft | 2.0.0 | articulation.points() | articulation_points() |
1 – soft | 2.0.0 | igraph.console() | console() |
1 – soft | 2.0.0 | igraph.to.graphNEL() | as_graphnel() |
1 – soft | 2.0.0 | igraph.from.graphNEL() | graph_from_graphnel() |
1 – soft | 2.0.0 | graph.adjlist() | graph_from_adj_list() |
1 – soft | 2.0.0 | get.incidence() | as_biadjacency_matrix() |
1 – soft | 2.0.0 | get.edgelist() | as_edgelist() |
1 – soft | 2.0.0 | get.data.frame() | as_data_frame() |
1 – soft | 2.0.0 | get.adjacency() | as_adjacency_matrix() |
1 – soft | 2.0.0 | get.adjlist() | as_adj_list() |
1 – soft | 2.0.0 | get.adjedgelist() | as_adj_edge_list() |
1 – soft | 2.1.0 | get.adjacency.dense(loops = ‘must be a character’) | sprintf(“Converting to get.adjacency.dense (loops = ‘%s’)”,loops) |
3 – stop | 2.0.0 | as_adjacency_matrix(edges = ) | |
1 – soft | 2.1.0 | as_adj() | as_adjacency_matrix() |
1 – soft | 1.6.0 | as_incidence_matrix() | as_biadjacency_matrix() |
1 – soft | 2.1.0 | as.directed() | as_directed() |
1 – soft | 2.1.0 | as.undirected() | as_undirected() |
1 – soft | 2.0.0 | graph.edgelist() | graph_from_edgelist() |
1 – soft | 2.0.0 | graph.data.frame() | graph_from_data_frame() |
1 – soft | 2.0.0 | is.chordal() | is_chordal() |
1 – soft | 2.0.0 | is.graphical.degree.sequence() | is_graphical() |
1 – soft | 2.0.0 | is.degree.sequence() | is_degseq() |
1 – soft | 2.0.0 | igraphdemo() | igraph_demo() |
1 – soft | 2.0.0 | power.law.fit() | fit_power_law() |
3 – stop | 2.1.0 | fit_power_law(implementation = “cannot be \”plfit.p\““) | I(‘fit_power_law(implementation = "plfit", p.value = TRUE) ’) |
1 – soft | 2.0.0 | vertex.disjoint.paths() | vertex_disjoint_paths() |
1 – soft | 2.0.0 | vertex.connectivity() | vertex_connectivity() |
1 – soft | 2.0.0 | stMincuts() | st_min_cuts() |
1 – soft | 2.0.0 | stCuts() | st_cuts() |
1 – soft | 2.0.0 | minimum.size.separators() | min_separators() |
1 – soft | 2.0.0 | minimal.st.separators() | min_st_separators() |
1 – soft | 2.0.0 | is.separator() | is_separator() |
1 – soft | 2.0.0 | is.minimal.separator() | is_min_separator() |
1 – soft | 2.0.0 | graph.mincut() | min_cut() |
1 – soft | 2.0.0 | graph.maxflow() | max_flow() |
1 – soft | 2.0.0 | graph.adhesion() | adhesion() |
1 – soft | 2.0.0 | edge.disjoint.paths() | edge_connectivity() |
1 – soft | 2.0.0 | edge.connectivity() | edge_connectivity() |
1 – soft | 2.0.0 | dominator.tree() | dominator_tree() |
1 – soft | 2.0.0 | write.graph() | write_graph() |
1 – soft | 2.0.0 | read.graph() | read_graph() |
1 – soft | 2.0.0 | graph.graphdb() | graph_from_graphdb() |
1 – soft | 2.0.0 | watts.strogatz.game() | sample_smallworld() |
1 – soft | 2.0.0 | static.power.law.game() | sample_fitness_pl() |
1 – soft | 2.0.0 | static.fitness.game() | sample_fitness() |
1 – soft | 2.0.0 | sbm.game() | sample_sbm() |
1 – soft | 2.0.0 | preference.game() | sample_pref() |
1 – soft | 2.0.0 | lastcit.game() | sample_last_cit() |
1 – soft | 2.0.0 | k.regular.game() | sample_k_regular() |
1 – soft | 2.0.0 | interconnected.islands.game() | sample_islands() |
1 – soft | 2.0.0 | grg.game() | sample_grg() |
1 – soft | 2.0.0 | growing.random.game() | sample_growing() |
1 – soft | 2.0.0 | forest.fire.game() | sample_forestfire() |
1 – soft | 2.0.0 | establishment.game() | sample_traits() |
1 – soft | 2.0.0 | degree.sequence.game() | sample_degseq() |
1 – soft | 2.0.0 | connect.neighborhood() | connect() |
1 – soft | 2.0.0 | citing.cited.type.game() | sample_cit_cit_types() |
1 – soft | 2.0.0 | cited.type.game() | sample_cit_types() |
1 – soft | 2.0.0 | callaway.traits.game() | sample_traits_callaway() |
2 – warn | 2.0.0 | bipartite.random.game() | Use sample_bipartite_gnp() or sample_bipartite_gnm() |
1 – soft | 2.0.0 | barabasi.game() | sample_pa() |
1 – soft | 2.0.0 | ba.game() | sample_pa() |
1 – soft | 2.0.0 | asymmetric.preference.game() | sample_asym_pref() |
1 – soft | 2.0.0 | aging.barabasi.game() | sample_pa_age() |
1 – soft | 2.0.0 | aging.ba.game() | sample_pa_age() |
1 – soft | 2.0.0 | aging.prefatt.game() | sample_pa_age() |
1 – soft | 0.8.0 | erdos.renyi.game() | sample_gnp() |
1 – soft | 0.8.0 | erdos.renyi.game() | sample_gnm() |
1 – soft | 0.8.0 | random.graph.game() | sample_gnp() |
1 – soft | 0.8.0 | random.graph.game() | sample_gnm() |
2 – warn | 2.1.0 | sample_degseq(method = ‘must be configuration instead of simple’) | |
2 – warn | 2.1.0 | sample_degseq(method = ‘must be fast.heur.simple instead of simple.no.multiple’) | |
2 – warn | 2.1.0 | sample_degseq(method = ‘must be configuration.simple instead of simple.no.multiple.uniform’) | |
1 – soft | 2.2.0 | sample_bipartite() | sample_bipartite_gnp() |
1 – soft | 2.2.0 | sample_bipartite() | sample_bipartite_gnm() |
1 – soft | 2.1.3 | bipartite() | bipartite_gnp() |
1 – soft | 2.1.3 | bipartite() | bipartite_gnm() |
1 – soft | 2.0.0 | graphlets.project() | graphlet_proj() |
1 – soft | 2.0.0 | graphlets.candidate.basis() | graphlet_basis() |
1 – soft | 2.0.0 | hrg.predict() | predict_edges() |
1 – soft | 2.0.0 | hrg.fit() | fit_hrg() |
1 – soft | 2.0.0 | hrg.game() | sample_hrg() |
1 – soft | 2.0.0 | hrg.dendrogram() | hrg_tree() |
1 – soft | 2.0.0 | hrg.create() | hrg() |
1 – soft | 2.0.0 | hrg.consensus() | consensus_tree() |
1 – soft | 2.0.0 | graph.incidence() | graph_from_biadjacency_matrix() |
1 – soft | 1.6.0 | graph_from_incidence_matrix() | graph_from_biadjacency_matrix() |
1 – soft | 1.6.0 | graph_from_incidence_matrix() | graph_from_biadjacency_matrix() |
1 – soft | 2.0.0 | is.directed() | is_directed() |
1 – soft | 2.0.0 | delete.vertices() | delete_vertices() |
1 – soft | 2.0.0 | delete.edges() | delete_edges() |
1 – soft | 2.0.0 | add.vertices() | add_vertices() |
1 – soft | 2.0.0 | add.edges() | add_edges() |
3 – stop | 2.1.5 | get_edge_ids(vp = ‘is not allowed to be a 2 times 2 matrix’) | |
2 – warn | 2.1.5 | get_edge_ids(vp = ‘supplied as a matrix should be a n times 2 matrix, not 2 times n’) | either transpose the matrix with t() or convert it to a data.frame with two columns. |
3 – stop | 2.0.0 | get.edge.ids(multi = ) | |
1 – soft | 2.0.0 | get.edge.ids(multi = ) | |
1 – soft | 2.1.0 | get.edge.ids() | get_edge_ids() |
3 – stop | 2.1.0 | nei() | .nei() |
3 – stop | 2.1.0 | innei() | .innei() |
3 – stop | 2.1.0 | outnei() | .outnei() |
3 – stop | 2.1.0 | inc() | .inc() |
3 – stop | 2.1.0 | adj() | .inc() |
3 – stop | 2.1.0 | from() | .from() |
3 – stop | 2.1.0 | to() | .to() |
3 – stop | 2.1.0 | adj() | .inc() |
3 – stop | 2.1.0 | inc() | .inc() |
3 – stop | 2.1.0 | from() | .from() |
3 – stop | 2.1.0 | to() | .to() |
1 – soft | 2.0.0 | piecewise.layout() | layout_components() |
1 – soft | 2.0.0 | layout.sugiyama() | layout_with_sugiyama() |
1 – soft | 2.0.0 | layout.star() | layout_as_star() |
1 – soft | 2.0.0 | layout.norm() | norm_coords() |
1 – soft | 2.0.0 | layout.merge() | merge_coords() |
1 – soft | 2.0.0 | layout.mds() | layout_with_mds() |
1 – soft | 2.0.0 | layout.grid() | layout_on_grid() |
1 – soft | 2.0.0 | layout.graphopt() | layout_with_graphopt() |
1 – soft | 2.0.0 | layout.gem() | layout_with_gem() |
1 – soft | 2.0.0 | layout.davidson.harel() | layout_with_dh() |
1 – soft | 2.0.0 | layout.bipartite() | layout_as_bipartite() |
1 – soft | 2.0.0 | layout.auto() | layout_nicely() |
1 – soft | 2.1.0 | layout.reingold.tilford() | layout_as_tree() |
1 – soft | 2.1.0 | layout.circle() | layout_in_circle() |
3 – stop | 2.1.0 | layout.grid.3d() | layout_on_grid() |
1 – soft | 2.1.0 | layout.sphere() | layout_on_sphere() |
1 – soft | 2.1.0 | layout.random() | layout_randomly() |
3 – stop | 0.8.0 | layout_with_fr(coolexp = ) | |
3 – stop | 0.8.0 | layout_with_fr(maxdelta = ) | |
3 – stop | 0.8.0 | layout_with_fr(area = ) | |
3 – stop | 0.8.0 | layout_with_fr(repulserad = ) | |
1 – soft | 2.1.0 | layout.fruchterman.reingold() | layout_with_fr() |
3 – stop | 0.8.0 | layout_with_kk(niter = ) | |
3 – stop | 0.8.0 | layout_with_kk(sigma = ) | |
3 – stop | 0.8.0 | layout_with_kk(initemp = ) | |
3 – stop | 0.8.0 | layout_with_kk(coolexp = ) | |
1 – soft | 2.1.0 | layout.kamada.kawai() | layout_with_kk() |
1 – soft | 2.1.0 | layout.lgl() | layout_with_lgl() |
1 – soft | 1.6.0 | layout_with_mds(options = ‘must be a list’) | c(“arpack_defaults() is now a function,
use options = arpack_defaults() instead of
options = arpack_defaults .”) |
2 – warn | 2.1.0 | layout.spring() | layout_with_fr() |
2 – warn | 2.1.0 | layout.svd() | layout_with_fr() |
2 – warn | 2.1.0 | layout.fruchterman.reingold.grid() | layout_with_fr() |
1 – soft | 2.0.0 | layout.drl() | layout_with_drl() |
1 – soft | 2.1.0 | graph() | make_graph() |
1 – soft | 2.1.0 | graph.famous() | make_graph() |
1 – soft | 2.1.0 | line.graph() | make_line_graph() |
1 – soft | 2.1.0 | graph.ring() | make_ring() |
1 – soft | 2.1.0 | graph.tree() | make_tree() |
1 – soft | 2.1.0 | graph.star() | make_star() |
1 – soft | 2.1.0 | graph.lcf() | graph_from_lcf() |
1 – soft | 2.1.0 | graph.lattice() | make_lattice() |
1 – soft | 2.0.3 | graph.lattice(circular = ‘use periodic argument instead’) | c(“circular is now deprecated, use
periodic instead.”) |
1 – soft | 2.1.0 | graph.kautz() | make_kautz_graph() |
1 – soft | 2.1.0 | graph.full.citation() | make_full_citation_graph() |
1 – soft | 2.1.0 | graph.full.bipartite() | make_full_bipartite_graph() |
1 – soft | 2.1.0 | graph.full() | make_full_graph() |
1 – soft | 2.1.0 | graph.formula() | graph_from_literal() |
1 – soft | 2.1.0 | graph.extended.chordal.ring() | make_chordal_ring() |
1 – soft | 2.1.0 | graph.empty() | make_empty_graph() |
1 – soft | 2.1.0 | graph.de.bruijn() | make_de_bruijn_graph() |
1 – soft | 2.1.0 | graph.bipartite() | make_bipartite_graph() |
1 – soft | 2.1.0 | graph.atlas() | graph_from_atlas() |
1 – soft | 2.1.0 | graph_() | c(“Please use constructors directly, for instance graph_from_edgelist().”,“graph_() will be removed in a future version of igraph.”) |
1 – soft | 2.0.3 | make_lattice(circular = ‘use periodic argument instead’) | c(“circular is now deprecated, use
periodic instead.”) |
1 – soft | 2.0.0 | minimum.spanning.tree() | mst() |
1 – soft | 2.0.0 | triad.census() | triad_census() |
1 – soft | 2.0.0 | graph.motifs.no() | count_motifs() |
1 – soft | 2.0.0 | graph.motifs.est() | sample_motifs() |
1 – soft | 2.0.0 | graph.motifs() | motifs() |
1 – soft | 2.0.0 | dyad.census() | dyad_census() |
1 – soft | 2.0.0 | graph.intersection() | intersection() |
1 – soft | 2.0.0 | graph.union() | union.igraph() |
1 – soft | 2.0.0 | graph.difference() | difference() |
1 – soft | 2.0.0 | graph.disjoint.union() | disjoint_union() |
1 – soft | 2.0.0 | graph.compose() | compose() |
1 – soft | 2.0.0 | graph.complementer() | complementer() |
1 – soft | 2.0.0 | running.mean() | running_mean() |
1 – soft | 2.0.0 | igraph.sample() | sample_seq() |
1 – soft | 2.0.0 | convex.hull() | convex_hull() |
1 – soft | 2.0.0 | igraph.options() | igraph_options() |
1 – soft | 2.0.0 | getIgraphOpt() | igraph_opt() |
1 – soft | 2.0.0 | path.length.hist() | distance_table() |
1 – soft | 2.0.0 | maximum.cardinality.search() | max_cardinality() |
1 – soft | 2.0.0 | is.dag() | is_dag() |
1 – soft | 2.1.0 | eccentricity(… =) | The argument mode must be named. |
1 – soft | 2.1.0 | radius(… =) | The argument mode must be named. |
1 – soft | 2.0.0 | autocurve.edges() | curve_multiple() |
1 – soft | 2.0.0 | igraph.shape.noplot() | shape_noplot() |
1 – soft | 2.0.0 | igraph.shape.noclip() | shape_noclip() |
1 – soft | 2.0.0 | vertex.shapes() | shapes() |
1 – soft | 2.0.0 | add.vertex.shape() | add_shape() |
1 – soft | 2.1.0 | similarity.jaccard() | similarity(method) |
1 – soft | 2.1.0 | similarity.dice() | similarity(method) |
1 – soft | 2.1.0 | similarity.invlogweighted() | similarity(method) |
1 – soft | 2.0.0 | is.simple() | is_simple() |
1 – soft | 2.0.0 | get.stochastic() | stochastic_matrix() |
1 – soft | 2.0.0 | get.shortest.paths() | shortest_paths() |
1 – soft | 2.0.0 | get.all.shortest.paths() | all_shortest_paths() |
1 – soft | 2.0.0 | get.diameter() | get_diameter() |
1 – soft | 2.0.0 | unfold.tree() | unfold_tree() |
1 – soft | 2.0.0 | topological.sort() | topo_sort() |
1 – soft | 2.0.0 | shortest.paths() | distances() |
1 – soft | 2.0.0 | neighborhood.size() | ego_size() |
1 – soft | 2.0.0 | maximum.bipartite.matching() | max_bipartite_match() |
1 – soft | 2.0.0 | is.mutual() | which_mutual() |
1 – soft | 2.0.0 | is.multiple() | which_multiple() |
1 – soft | 2.0.0 | is.maximal.matching() | is_max_matching() |
1 – soft | 2.0.0 | is.matching() | is_matching() |
1 – soft | 2.0.0 | is.loop() | which_loop() |
1 – soft | 2.0.0 | is.connected() | is_connected() |
1 – soft | 2.0.0 | induced.subgraph() | induced_subgraph() |
1 – soft | 2.0.0 | has.multiple() | any_multiple() |
1 – soft | 2.0.0 | graph.neighborhood() | make_ego_graph() |
1 – soft | 2.0.0 | graph.laplacian() | laplacian_matrix() |
1 – soft | 2.0.0 | graph.knn() | knn() |
1 – soft | 2.0.0 | graph.dfs() | dfs() |
1 – soft | 2.0.0 | graph.density() | edge_density() |
1 – soft | 2.0.0 | graph.coreness() | coreness() |
1 – soft | 2.0.0 | graph.bfs() | bfs() |
1 – soft | 2.0.0 | farthest.nodes() | farthest_vertices() |
1 – soft | 2.0.0 | degree.distribution() | degree_distribution() |
1 – soft | 2.0.0 | count.multiple() | count_multiple() |
1 – soft | 2.0.0 | clusters() | components() |
1 – soft | 2.0.0 | average.path.length() | mean_distance() |
1 – soft | 2.1.0 | subgraph.edges() | subgraph_from_edges() |
3 – stop | 1.3.0 | bfs(neimode = ) | bfs(mode = ) |
2 – warn | 2.2.0 | bfs(father = ) | bfs(parent = ) |
3 – stop | 1.3.0 | dfs(neimode = ) | dfs(mode = ) |
2 – warn | 2.2.0 | dfs(father = ) | dfs(parent = ) |
1 – soft | 2.0.3 | make_lattice(normalized = ‘provide normalization instead’) | c(“normalized is now deprecated, use
normalization instead.”) |
1 – soft | 2.0.0 | are.connected() | are_adjacent() |
1 – soft | 2.0.0 | igraph.version() | igraph_version() |
1 – soft | 2.0.0 | tkplot.setcoords() | tk_set_coords() |
1 – soft | 2.0.0 | tkplot.rotate() | tk_rotate() |
1 – soft | 2.0.0 | tkplot.reshape() | tk_reshape() |
1 – soft | 2.0.0 | tkplot.off() | tk_off() |
1 – soft | 2.0.0 | tkplot.getcoords() | tk_coords() |
1 – soft | 2.0.0 | tkplot.fit.to.screen() | tk_fit() |
1 – soft | 2.0.0 | tkplot.export.postscript() | tk_postscript() |
1 – soft | 2.0.0 | tkplot.close() | tk_close() |
1 – soft | 2.0.0 | tkplot.center() | tk_center() |
1 – soft | 2.0.0 | tkplot.canvas() | tk_canvas() |
1 – soft | 2.0.0 | permute.vertices() | permute() |
1 – soft | 2.0.0 | graph.isocreate() | graph_from_isomorphism_class() |
1 – soft | 2.0.0 | graph.automorphisms() | count_automorphisms() |
1 – soft | 2.0.0 | canonical.permutation() | canonical_permutation() |
1 – soft | 2.0.0 | automorphisms() | count_automorphisms() |
1 – soft | 2.0.0 | adjacent.triangles() | count_triangles() |