Skip to contents

[Deprecated]

page.rank() was renamed to page_rank() to create a more consistent API.

Usage

page.rank(
  graph,
  algo = c("prpack", "arpack"),
  vids = V(graph),
  directed = TRUE,
  damping = 0.85,
  personalized = NULL,
  weights = NULL,
  options = NULL
)

Arguments

graph

The graph object.

algo

Character scalar, which implementation to use to carry out the calculation. The default is "prpack", which uses the PRPACK library (https://github.com/dgleich/prpack) to calculate PageRank scores by solving a set of linear equations. This is a new implementation in igraph version 0.7, and the suggested one, as it is the most stable and the fastest for all but small graphs. "arpack" uses the ARPACK library, the default implementation from igraph version 0.5 until version 0.7. It computes PageRank scores by solving an eingevalue problem.

vids

The vertices of interest.

directed

Logical, if true directed paths will be considered for directed graphs. It is ignored for undirected graphs.

damping

The damping factor (‘d’ in the original paper).

personalized

Optional vector giving a probability distribution to calculate personalized PageRank. For personalized PageRank, the probability of jumping to a node when abandoning the random walk is not uniform, but it is given by this vector. The vector should contains an entry for each vertex and it will be rescaled to sum up to one.

weights

A numerical vector or NULL. This argument can be used to give edge weights for calculating the weighted PageRank of vertices. If this is NULL and the graph has a weight edge attribute then that is used. If weights is a numerical vector then it used, even if the graph has a weights edge attribute. If this is NA, then no edge weights are used (even if the graph has a weight edge attribute. This function interprets edge weights as connection strengths. In the random surfer model, an edge with a larger weight is more likely to be selected by the surfer.

options

A named list, to override some ARPACK options. See arpack() for details. This argument is ignored if the PRPACK implementation is used.