Finding community structure by multi-level optimization of modularity
Source:R/community.R
multilevel.community.Rd
multilevel.community()
was renamed to cluster_louvain()
to create a more
consistent API.
Arguments
- graph
The input graph. It must be undirected.
- weights
The weights of the edges. It must be a positive numeric vector,
NULL
orNA
. If it isNULL
and the input graph has a ‘weight’ edge attribute, then that attribute will be used. IfNULL
and no such attribute is present, then the edges will have equal weights. Set this toNA
if the graph was a ‘weight’ edge attribute, but you don't want to use it for community detection. A larger edge weight means a stronger connection for this function.- resolution
Optional resolution parameter that allows the user to adjust the resolution parameter of the modularity function that the algorithm uses internally. Lower values typically yield fewer, larger clusters. The original definition of modularity is recovered when the resolution parameter is set to 1.